

PAD010 Master Thesis
Software Engineering
Thesis No: MSE-2002:29
2002 10

PERFORMANCE-ORIENTED VS. MAINTAINABILITY-
ORIENTED IMPLEMENTATION: A CASE STUDY OF THE

REACTIVE PLANNER OF TEAM SWEDEN.

By
David Johansson & Daniel Lehtovirta

Department of
Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

age 1 of 17
P

This thesis is submitted to the Department of Software Engineering and Computer Science at Blekinge
Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in
Software Engineering. The thesis is equivalent to 2x20 weeks of full time studies.

Contact Information:
Authors:
Daniel Lehtovirta
David Johansson

University advisor:
Stefan Johansson
Agent Systems Research and Technology

Page 2 of 17

Department of Internet: www.bth.se/ipd
Software Engineering and Computer Science Phone: +46 457 38 50 00
Blekinge Institute of Technology Fax: + 46 457 271 25
Box 520
SE – 372 25 Ronneby
Sweden

http://www.bth.se/ipd

Contents

1. Introduction .. 1

1.1. Background... 1
1.2. Hypothesis .. 2
1.3. Scientific Method ... 2
1.4. Outline of the Thesis .. 2

2. Team Sweden Architecture Overview ... 2
3. The Structure of the RP.. 3

3.1. The Maintainability-oriented Implementation.. 4
3.2. The Performance-oriented Implementation.. 5

4. Experiment setup.. 5
4.1. Maintainability ... 5
4.2. CPU Usage ... 6
4.3. Memory Usage ... 7

5. Analysis.. 7
5.1. Maintainability ... 7
5.2. CPU Usage ... 8
5.3. Memory Usage ... 9

6. Discussion .. 10
6.1. Future improvements.. 10

7. Conclusion.. 11
8. References .. 12

Appendix I: Scenario Description ..13
Appendix II: Expert Effort Estimations ..14
Appendix III: Bengtsson-Bosch Estimations ...15
Appendix IV: Performance Test Data ...17

Page 3 of 7
 1i

Preface
Our supervisor Stefan Johansson was the
first to introduce us to the domain of
RoboCup, which is an international
competition for Artificial Intelligence and
Robotics. This because he had himself
been involved since the beginning of the
competition through the currently only
Swedish contribution to the contest, called
Team Sweden. Team Sweden competes in
a league called the Sony Four Legged
League. This particular league uses four
legged autonomous robots supplied by
Sony, currently the AIBO [13] series.

Our work was in the beginning supposed
to be evaluating the impact of different
enhancements that could be made on a
game-planning module in the system. This
work was somewhat complicated by the
complex and poorly documented
implementation of the module. Because of
this we decided to restructure the entire
module to make alterations and
improvements easier.

However as the work proceeded we
realized that it would be more interesting
to evaluate the difference between a
maintainability-oriented implementation
and a performance -oriented
implementation. We felt that this would
be a more appealing topic in the field of
software engineering.

Page 1 o 7
f 1ii

Abstract
Our work is a case study for Team
Sweden, which is a national effort to
produce a team of soccer playing robots.

We took the present structure of the
Reactive Planner, which is the game-
planning module of the system, and made
two new parallel versions of the Reactive
Planner. One where we tried to optimize
for CPU and memory usage called the
performance-oriented implementation. We
also made one implementation where we
tried to optimize for maintainability called
the maintainability-oriented
implementation.

To evaluate the implementations we ran a
series of CPU and memory usage tests to
assess the performance. We also
estimated the maintainability of both
implementations. The test results where
later used to decide which implementation
we should recommend to Team Sweden.

The results showed that the difference in
maintainability did outweigh the
difference in performance. The conclusion
is that the maintainability-oriented
implementation is in this case the
preferred solution.

Keyword: Performance, Maintainability
Effort, Team Sweden, and RoboCup.

1. Introduction
This section contains a short introduction
to why we chose the topic and a short
description of RoboCup.

1.1. Background
RoboCup [16] is an international football
league for autonomous robots originally
started in 1993 by a group of Japanese
researchers. Their goal was to create an
arena to test and promote research in the
field of Artificial Intelligence (AI) and
Robotics in Japan. As the project took
form, AI and Robotics researchers from
other nations gained interest in the
competition and convinced the arrangers
to make the contest an international one.
The competition has since then grown and

is today divided into a number of different
branches of AI and Robotics research.

Team Sweden [17] is a Swedish national
effort to produce a team of soccer playing
physical robots to enter the RoboCup
international competition. Currently Team
Sweden is a member of the Sony four-
legged league (SFLL). All teams in SFLL
have the same hardware, the Sony AIBO
robots [13], the focus of this competition
is therefore not to build robots but to
program them.

We will try to evaluate two different
implementations of the Reactive Planner
module (RP) with the same functionality.
This to deduce how a maintainable-
oriented implementation (MOI) will
perform compared to a performance-
oriented implementation (POI) regarding
CPU usage, memory usage and
maintainability. The difference between a
POI and a MOI is only relative to each
other, there is no absolute scale of how
maintainable a system is.

Page 1 of 17

In this real-time application the
performance of the different modules are
important (see Section 2 for a description
of the modules). This because all the
decisions are made in real-time during the
game, and a game planner with high
performance will respond quicker to
changes in the game. If the response is
quicker than that of the opponents this
will result in an advantage during a match.
Although there is not a critical shortage of
memory it is still important to take the
memory usage into account so that it does
not grow out of proportions. Since the
SFLL domain is updated each year with
new rules and regulations, the software is
under constant revision, which also makes
maintainability a very important factor.

1.2. Hypothesis
Our hypothesis is that the use of a MOI
will decrease performance and increase
memory usage, but only to an extent that
is negligible in comparison to the gain in
maintainability. In the case of the POI, it
will increase the performance but decrease
the maintainability to a larger extent than
the gain of performance.

1.3. Scientific Method
To test if our hypothesis is correct, we
carried through a number of tests on
performance and maintainability qualities
of the two implementations. The tests
where followed by an evaluation of the
test results to determine which
implementation we should recommend to
Team Sweden.

1.4. Outline of the Thesis
We will present an architectural overview
of the system followed by closer look of
the functionality of the Reactive Planner
(RP) and the two new versions of the RP.
After the overview follows a description
of how we conducted the experiments and
their results. Lastly we round off with an

analysis of the test result, a discussion and
a conclusion.

2. Team Sweden
Architecture Overview
This section contains an overview of the
current architecture used by Team Sweden
in RoboCup [10].

• Commander
The Commander is the interface
between the hardware and the rest of
the system. It sends motor commands
to and receives sensor data from the
hardware. It also receives locomotion
commands from the Hierarchical
Behavior Module (HBM) and head
commands from the Perceptual
Anchoring Module (PAM).

• Perceptual Anchoring Module
The PAM creates a map with positions
of object relative to the robots own
position from information supplied by
the hardware. It also controls the head
movements of the robot and various
image processing.

Page 2 of 17

Figure 1. The Team Sweden architecture, which is based on the Thinking Cap architecture.

• Hierarchical Behavior Module
The HBM gets behavior commands
from the RP, and uses position
information from the PAM to send
locomotion commands to the
Commander.

• Global Map
This module creates a map over the
playing field from information
supplied by the PAM and from
information received from the other
robots in the team.

• Reactive Planner
The RP processes the map information
that is supplied by the Global Map
(GM) and the PAM. It calculates the
most appropriate behavior for any
given map state and sends this
information to the HBM. The RP is
based on the Electric Field Approach
(EFA) [5, 6].

3. The Structure of the RP
This section contains a more detailed
overview of the functionality of the RP
and an overview of the two different
implementations.

The main function of the RP is to emulate
a number of behaviors; these are chosen
based on the current situation on the map.
The RP evaluates what impact these
behaviors will have using of the EFA;

 “The Electric Field Approach is a logic
replication of a real world phenomenon.

The environment is abstracted to a
representation of a virtual electric field

with areas of positive and negative
potential, used as a heuristic function;

Dangerous or bad places are represented
by negative virtual charges while positive

ones represent good places.” [6]

Most fields are calculated in real-time to
describe objects such as players, but it is
also possible to add static charges to favor
or disfavor a certain part of the field such
as the goals. The RP calculates the sum of
the potential of these fields by probing
strategic positions, for instance the
position of the ball in the game. As the
ball moves over the game field it will be
affected by the different electric fields
depending on the relative distance and
size of the charge on the fields. By

calculating the charges it is possible to
form an opinion of what behavior that is
the best for any given map. The strategic
positions can be used to evaluate
behaviors that move the ball, the robot
etc. This evaluation is done continuously
during the game to get a dynamic choice
of behaviors.

Page 3 of 17

For our experiment we first constructed a
RP module with a certain amount of
functionality, this original module had
basic performance optimizations such as
the use of new and malloc was restricted
to the initialization of the module. This
version was then developed into two
separate versions, which in turn were
restructured into a MOI and a POI, this to
avoid performance issues related to a
difference in functionality. See Section
3.1 and 3.2.

3.1. The Maintainability-
oriented Implementation

To improve the maintainability of the
implementation, we did a logical division
of it, shown in Figure 2. This to make
replaceable objects within the
implementation that could be subjects of
replacement or improvement due to errors
or environmental changes:

• The Rp object serves as an interface
for the module.

• The EFAEngine functions as a
controller object in the
implementation. It uses the other
modules to emulate behaviors and to
calculate the resulting potential.

• The State object is used to decide
which state the game is in, which in
turn is used by EFAEngine to decide
what strategy to choose.

• The Strategy object is used to decide
what strategy to choose i.e. what
behaviors are feasible to evaluate. It
also decides how the probes and
charges should be used.

• The FieldArithmetics object is used
as a utility object to calculate
distances and angles on the map.

• The different behavior objects inherit
general behavior functions from
Behavior and are used to emulate
different behaviors on the map. Each
behavior object implements a certain
behavior that the robot can perform.
The behaviors control how the robot
should act in a certain situation.

• Probes are used to measure the
potential of a behavior. The probes
can be placed in positions that
correspond with real objects such as
the ball. The behavior that raises the
potential at the probe the most is
considered to be the best behavior.

• The Charge object represents a
charge on a point on the map.

• Charges- and Probe-Array objects
hold as they imply probes and
charges, which are used to emulate
electric fields and positions to probe.

Page 4 of 17

Figure 2. Unified Modelling Language (UML) diagram of the MOI.

() ()∑ ∑
= =

∗=

s ck

n

k

m
mnntot CSVSPM

1 1
,

P (Sn) = Probability weight of scenario n
V (Sn, Cm) = Affected volume of component m in scenario n.
kn = Number of scenarios.
kc = Total number of components

Figure 3. Describing the Bengtsson-Bosch formula for assessing maintenance effort [3].

Structural Criticism
When making the MOI we took no
consideration to performance issues, this
means that there probably could be
made performance improvements
without changing the structure to any
large extent. There could also be a more
performance friendly structure with the
same degree of maintainability [4]. We
could for instance remove some of the
objects to increase the performance of
the implementation.

3.2. The Performance-
oriented Implementation

The POI is quite straightforward as it only
uses two objects, the RP interface, just as
in the MOI, and the EFAEngine that now
contains all the functionality that the other
objects had in the former case. We chose
this structure to minimize the calls
between objects and the use of
dynamically allocated memory.

Structural Criticism
Further improvements in the area of
performance seem hard to make in this
structure, possibly to remove the
interface altogether, but we reasoned
that this would result in only a negligible
performance gain. However, the C++

language has a number of ways to
enhance the performance within the
object, for instance with the use of inline
functions. It is likely that we have not
used these to their full extent, which
could affect the performance negative
we judge this, as in the case of the MOI,
not to alter the final comparison to any
large extent. To raise maintainability in
the POI we could create a more
structured implementation, we could
also split the code into several files to
make the code easier to understand.

4. Experiment setup
This section contains information about
how we conducted our experiments and
what we hoped to gain of them.

We wanted to test the relative difference
between the implementations because
absolute values are different on different
platforms. To test the different qualities,
we have tried to find techniques that
tested the most of the system, in regards
to both performance and maintainability.

Figure 4. A UML diagram of the POI.

4.1. Maintainability
To test the maintainability we decided to
follow the general guidelines and
technique of architecture level software
maintenance prediction, presented by
Bengtsson and Bosch [7, 8]. The
technique involves making changeability
scenarios and probability estimations to
show how often the change scenarios will
occur in the future. These values are then
to be used in the mathematical formula in
Figure 3.

Page 5 of 17

To get better estimations of the required
effort for the change scenarios we also
decided to get outside help with
estimating the maintainability. We
selected a number of architecture and
design experts to evaluate how much
difference in effort there where between
the implementations for each change
scenario. For a description of the
scenarios see Appendix I.

4.2. CPU Usage
The performance tests could not at this
stage be run on the target platform, which
is the AIBO series 210 robots, due to the
fact that the robot was in a stage where
the development environment was not
ready for use. We decided to run the tests
with the target compiler GCC [12] under
the Linux [11] operating system. This
could result in measurement errors that
cannot be avoided unless the tests are
performed directly on the hardware
platform.

The tests cases were designed so that they
would test the RP’s operation and
measure the speed difference in percent
between the implementations. To follow-
up the first test, we also tested an increase
in the number of charges, probes and
behaviors to see if this would have any
impact on the difference between the
implementations. We also altered the
input i.e. the maps to evaluate if this
would have any impact on the difference
between the implementations.

We decided to test the performance
according to the following test cases;

• TC1 Normal Case:
In this test case we wanted to test the
two implementations of the RP with 6
charges, 9 behaviors and 1 probe and
as we made it initially.
This test case is going to be used as a
template test, to evaluate the general
performance for the implementations.

• TC2 Increasing the number of

charges:
In this test case we wanted to measure
the difference in performance between
the two implementations if we changed
the number of charges that was used.
We chose to increase the charges from
the normal case of 6 to the maximum
of the current system configuration, a
total of 50 charges.

• TC3 Increasing the number of
probes:
Here we wanted to see if there is a
difference in performance between the
implementations if we altered the
number of probes in the systems.
We increased the number of probes
with 4 making a total of 5 probes in the
system. The reason we decided to test
5 probes was that this was the current
maximum number of allowed probes
in the current system configuration.
We saw no reason to increase the
maximum number of probes.

• TC4 Increasing the number of
behaviors:
In this test case we wanted to test the
difference in performance between the
two implementations if we changed the
number of behaviors that were
evaluated.
We multiplied the number of behaviors
by a factor 4 making a total of 36
behavior evaluations. We decided to
increase the behaviors by a factor 4
because we felt that this would give us
a good enough base for our test results.
We also estimated, based on our
knowledge of the system, that this was
the highest number of behaviors that
would be added within the next 2 years
if no larger change to the behavioral
system would be implemented.

• TC5 Increasing the number of
charges, probes and behaviors:

Page 6 of 17

With this test we want to see what the
difference in performance was if we
maximized the implementations. We
used 5 probes, 50 charges and 36
behaviors. This test in other words
incorporates TC2, 3 & 4.

4.3. Memory Usage
To test the memory we used the same test
cases as in the CPU tests. See Section 4.2
for a description of the test cases. We
used a tool to measure the memory usage
called “top” for Gnu/Linux, which is an
integrated program in the Red Hat
distribution [11]. The reason we chose
“top” was that it is a widely spread
software and very easy to use.

5. Analysis
This section contains the results of our
tests and our interpretation of them.

5.1. Maintainability
Here is a presentation of the different
effort evaluation results.

Effort Evaluation by experts
The experts evaluated the difference in
effort between the two implementations
for each change scenario. The experts
consisted of two domain experts and
three general software designers. See
Appendix II for the estimations.

One thing to take in account is that the
domain experts are familiar with both
implementations and their functionality,
because of this they might not be
entirely objective in their estimations, as
it is hard to estimate the time already
spent on understanding the
implementations.
Another thing to take into consideration
is that 47 percent of all maintainability
effort is estimated to be spent on
understanding the code of system [9].
The experts have not taken these 47
percent into consideration in these
estimations.

Result
The overall estimated effort difference
was 32 percent in favor of the MOI.
That means that it takes 32 percent more
time to make a change in the POI than in
the MOI. We got this result by
calculating the arithmetic average for
each scenario and then calculating the
total average for the MOI. See Appendix
II for the data and calculations.

Effort Evaluation with the
Bengtsson-Bosch Formula

The Bengtsson-Bosch formula is another
way to calculate the effort that is
required for maintenance of an
implementation. A formula takes an
arithmetical approach to estimate the
effort required for maintenance based on
software metrics. To make use of the
formula we needed to estimate the
probabilities, or weights, for each of the
scenarios to occur. Two domain experts
made these estimations. The experts had
also reviewed historical data that was
available for the domain. We also
needed the affected code volume for
each scenario, which we retrieved
through estimations of each component.
See Appendix III Table 1, 2 and 3 for
the data and calculations.
Result

Page 7 of 17

To get the effort of the different
implementations, we multiplied the
probability estimation of each scenario
with its affected code volume and added
up these to get the total effort for each
implementation, as described in the
formula in Figure 3. We then calculated
the difference between the MOI and POI
to 14 percent, i.e. the POI takes 14
percent more effort to maintain during a
two-year period than the MOI. See
Appendix III Table 1, 2, 3 and 4 for the
data and calculations.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5

Testcase

Ti
m

e
(m

s)

POI

MOI

Figure 5. Describing the performance difference between the implementations.

Effort Comparison
After reviewing the results of the former
estimations, we came to the conclusion
that we could not compare the results.
This because the Bengtsson-Bosch
formula took into account the
probability estimation of the scenarios,
whereas the estimations of the experts
did not. The expert estimated the
difference between the implementations
and not the size of the changes. We
decided to solve this by removing the
scenario probability estimation from the
Bengtsson-Bosch formula in Figure 3,
thus only expressing the effort as the
affected code volume of each
component.
Result
Using the modified formula we got an
estimated effort difference of 15 percent,
which is comparable with the 32 percent
we got from the experts. To make use of
both estimation methods, we calculated
the arithmetic average of these to 24
percent.

5.2. CPU Usage
The test results can be seen in Appendix
IV Table 1 and Figure 5 illustrates the
difference between the two
implementations in milliseconds.

• TC1 Normal Case:
 We got an average speed difference of
46 percent in favor to the POI.

• TC2 Increasing the number of
charges:
The result showed an arithmetic
average difference of 49 percent in
favor to the POI.

• TC3 Increasing the number of
probes:
The test case generated an arithmetic
average difference of 58 percent in
favor to the POI.

• TC4 Increasing the number of
behaviors:
Here we got an arithmetic average
difference of 46 percent in favor to the
POI.

• TC5 Increasing the number of
charges, probes and behaviors
In this test case we got an arithmetic
average difference of 61 percent in
favor to the POI.

The difference in overall performance
between the two implementations is
mostly due to the communication between
objects in the MOI. Within our scope the
findings show that the performance
difference between the implementations is
linear. This does however not mean that
additional increases will follow the same
trajectory.

Page 8 of 17

500

550

600

650

700

750

1 2 3 4 5

Testcase

M
em

or
y

U
sa

ge
 (K

b)

POI

MOI

Figure 6. Describing the memory usage difference between the implementations

5.3. Memory Usage
Figure 6 illustrates the difference in
memory usage between the two
implementations in Kilobyte (Kb). The
Memory usage test generated the
following results see Appendix IV Table
3:

• TC1 Normal Case:
POI used 628Kb and the MOI used
668Kb, making a difference of 40Kb
or 6 percent in favor to the POI.

• TC2 Increasing the number of
charges:
POI used 636Kb and the MOI used
693Kb, making a difference of 57Kb
or 9 percent in favor to the POI.

• TC3 Increasing the number of
probes:
POI used 628Kb and the MOI used
668Kb, making a difference of 40Kb
or 6 percent in favor to the POI.

• TC4 Increasing the number of
behaviors:
POI used 644Kb and the MOI used
700Kb, making a difference of 56Kb
or 9 percent in favor to the POI.

• TC5 Increasing the number of
charges, probes and behaviors
POI used 652Kb and the MOI used
725Kb, making a difference of 73Kb
or 11 percent in favor to the POI.

The increase of memory usage in the MOI
versus the POI is due to the number of
objects. This is also supported by the fact
that the increase in memory usage is an
accumulation between the test cases,
meaning that the total memory usage
increase in test case 1,2,3,4 is the same as
in TC5.

Page 9 of 17

6. Discussion
This section contains our interpretation of
the test result and a general discussion
about what improvements that could be
made to the RP.

The values we have estimated leave room
for interpretation. We believe that to get
more certain estimation more effort
estimations methods could be used. This
is an area where more research is needed.

The estimation method could also be
viewed with some skepticism since the
experts that estimated the effort required
between the implementations could be
more familiar with the implementations.
However we believe that experts should
not be too familiar with the
implementations either, because then it
could then be hard to perceive the effort
difference based on the complexity of the
implementations. The Bengtsson-Bosch
formula on the other hand estimates the
size of the affected volume in lines of
code (LOC) to be proportional to the
effort required to maintain the
components, this might not be the best
way to estimate the effort required to
maintain a system. We feel that
maintenance is somewhat more than just
the number of lines of code, for instance,
documentation of the system will also
decrease the maintenance effort.

“… there is a clear and intuitive
connection between poorly structured and

poorly documented products and their
maintainability.” [1].

One aspect to take into consideration is
the fact that this real-time system, unlike
many others, is altered and improved
frequently, at the very least each year.
This makes maintainability an important
factor. In addition, there are also a number
of new people introduced to the system
each year, namely students, which makes
it even more important to have a more
maintainable implementation of the
system. A possible symptom of not
having a maintainable system is that the
programmers lose control of the system
and it grows out of proportions, which is

bad for both performance and
maintainability.

6.1. Future improvements
We suspect that improvements could be
made to the MOI to improve its
performance without affecting its
maintainability to any large extent. One
concrete and easy improvement could be
changing the charge and probe classes to
structs thereby avoiding a large number of
objects and object calls in the system.

The scenario that affected the most
modules was S1, which was to change the
map structure. To reduce the affected
modules and thereby increase the
maintainability of the RP, a container
class that converts the incoming map
formats to an internal format could be
created.

Page 10 of 17

One good way to increase maintainability
without loosing performance is to have a
good documentation of the system. For
instance design documentation, sequence
diagrams etc. There are some programs
that could help Team Sweden with
documentation for instance “Doxygen”
[14] which is a program that auto
generates documentation from source
files. Other ways to improve the
maintenances process is to use a
Concurrent Versions System (CVS) [15],
which manages the different versions of
the source code.

7. Conclusion
According to information received from
Team Sweden, the RP version from the
2001 tournament used 1.5 percent of the
AIBO robots total CPU capacity and all of
the modules used about 60 percent of the
CPU capacity. If the POI uses the same
amount of CPU capacity as the previous
version, an increase of 40-60 percent of
the RP module will only result in a CPU
usage of 2.4 percent (1.5 * 1.60 = 2.4
percent) of the total CPU capacity. This is
to be compared towards a 24 percent more
maintainability effort spent on the POI
then the MOI.

Based on historical data of the modules
CPU usage, we draw the conclusion that
the increase in CPU usage of the MOI
version of the RP is negligible in
comparison to the gain in maintainability.
Therefore in the case of team Sweden, we
would recommend the MOI, given the
fact that there are new developers
introduced to the system each year.

It is hard to draw and any general
conclusion since this is a case study. The
choice of choosing a maintainability
oriented solution or a performance
oriented, depends on factors such as the
importance of performance and how much
effort that is spent on maintaining the
system.

Page 11 of 17

8. References
[1] Software Engineering Shari, Lawrence, Pfleeger (1998) ISBN 0-13-081272-2

[2] Design and use of software architectures, J. Bosch (2000) ISBN 0-201-67494-7

[3] Design and Evaluation of Software Architecture P. O. Bengtsson (1999) ISSN 1103-
1581

[4] Maintainability Myth Causes Performance Problems in Parallel Applications, D.
Häggander, P.O. Bengtsson, J. Bosch, L. Lundberg, (1999) Proceedings 3rd Annual
IASTED SEA pp.288-294

[5] Using the Electric Field Approach in the RoboCup domain S. Johansson and A. Saffiotti
(2001) Proc. of the RoboCup Symposium (Seattle, WA, 2001) in press

[6] An Electric Field Approach – A Strategy for Sony Four-Legged Robot, J. Johansson
(2001) M.Sc. Thesis MSE-2001-03, Blekinge Institute of Technology

[7] Architecture Level Prediction of Software Maintenance, P.O. Bengtsson, J. Bosch
(1999) in Proceedings of Third European Conference on Software Maintenance and
Reengineering, Amsterdam, Netherlands, March, pp. 139-147

[8] Architecture-Level Modifiability Analysis, P.O. Bengtsson (2002) Doctoral Thesis
ISSN 1103-1581, ISRN HK-R-RES-99/10—SE

[9] Tutorial on Software Maintenance (1983), G. Parikh, N. Zvegintzov, IEEE Computer
Society Press, pp 61-62

[10] Team Sweden (2002) A. Saffiotti, A Björklund, S. Johansson, Z. Wasik, Birk, S.
Coradeschi, and S. Tadokoro (eds) RoboCup 2001, Springer-Verlag, 2002, in press

[11] Red Hat – Linux, Embedded Linux and Open Source Solutions http://www.redhat.com
(2002-10-04)

[12] GCC Home Page – GNU Project – Free Software Foundation (FSF) http://gcc.gnu.org
(2002-10-04)

[13] Entertainment Robot AIBO, http://www.AIBO.com (2002-10-04)

[14] Doxygen, http://www.stack.nl/~dimitri/doxygen (2002-10-06)

[15] Concurrent Versions System, http://www.cvshome.org (2002-10-06)

[16] RoboCup Official Site, http://www.robocup.org (2002-10-06)

[17] Team Sweden at RoboCup, http://aass.oru.se/Agora/RoboCup (2002-10-06)

Page 12 of 17

[18] RoboCup Legged Robot League, https://www.openr.org/page1_2003/ (2002-10-06)

Appendix I: Scenario Description
 1. A description of the scenarios.

Page 13 of 17

Name Scenario
Category

Scenario Description

S1 Algorithm
Changes

New sensor makes the map more accurate and the old map structure
is exchanged. We have to change the calculations of the map.
Results in: System wide changes

S2 Hardware
Changes

A new locomotion device is fitted to the robot, which results in
changes in the speed, distance calculations i.e. the kick-distance etc.
Results in: Changes in the behaviours.

S3 Environmental
Changes

The RoboCup rules changes to allow a different number of players
per team.
Results in: State and Behaviours

S4 Environmental
Changes

The RoboCup rules changes so that the game field size is changed.
Results in: Changes in behaviours.

S5 Environmental
Changes/
Hardware
Changes

The system is to be changed to allow communication for
synchronization of strategies between the robots.
Results in: Changes in Strategy

S6 Structural
Changes

There is a need to add a new behaviour because the present
behaviours are not enough to solve a new problem during a match.
Results in: An additional new behaviour class.

S7 Structural
Changes

There is a need to add a new strategy because the present strategies
are not enough to solve a new problem during a match.
Results in: Changes in Strategy.

S8 Structural
Changes

We want to add charges to get better estimations of the expected
result of the behaviors.
Results in: Changes in Strategy

S9 Structural
Changes

 We want to add probes to get better estimations of the expected
result of the behaviors.
Results in: Changes in Strategy

S10 Algorithm
Changes

We want to change the potential calculations to make them more
suited for new problems in the game.
Results in: Changes in EFAEngine

S11 Algorithm
Changes

The algorithms for altering the objects position in the map need to be
changed due to optimisations issues.
Results in: Changes in the abstract Behaviour class.

S12 Structural
Changes

Remove the Lps map so that we only make use of one map structure.
Results in: EFAEngine, Behaviour classes and Rp

S13 Algorithm
changes

Extend the RP to include estimations of how much time it takes to
perform a certain behavior.
Results in: Changes in Behavior classes and EFAEngine.

Appendix II: Expert Effort Estimations

1. The evaluation of the Experts
E1 – E2: Domain Experts
E3 – E5: Design Experts
S1 – S13: Scenarios

Page 14 of 17

 E1 E2 E3 E4 E5 Average
S1 5% 10% 0% 10% 0% 5%
S2 20% 15% 15% 50% 25% 25%
S3 30% 15% 25% 10% 100% 36%
S4 10% 10% 35% 100% 0% 31%
S5 10% 10% 30% 50% 50% 30%
S6 10% 20% 100% 100% 100% 66%
S7 5% 5% 25% 20% 100% 31%
S8 0% 0% 20% 10% 0% 6%
S9 0% 0% 20% 10% 0% 6%
S10 10% 15% 10% 10% 50% 19%
S11 10% 10% 10% 40% 25% 19%
S12 30% 60% 50% 100% 50% 58%
S13 25% 20% 100% 100% 25% 54%

Total Average 32%

Appendix III: Bengtsson-Bosch Estimations

1. Lines of code in the maintainability-
orientated implementation
Scenario LOC
S1 800
S2 70
S3 50
S4 50
S5 20
S6 50
S7 20
S8 10
S9 10
S10 20
S11 50
S12 400
S13 50

3. Scenario Weight
E1 and E2: Domain Experts
S1 – S13: Scenarios
P (S): Scenario probability, which is calculated

by dividing the average for each scenario with the total average for all scenarios.
Scenario E1 E2 Average P (S)
S1 20 30 25 0,04
S2 10 90 50 0,07
S3 50 20 35 0,05
S4 50 20 35 0,05
S5 80 90 85 0,12
S6 90 97 94 0,13
S7 85 92 89 0,13
S8 70 80 75 0,11
S9 60 62 61 0,09
S10 30 41 36 0,05
S11 20 64 42 0,06
S12 20 19 20 0,03
S13 50 58 54 0,08
Sum 701 1

Page 15 of 17

2. Lines of code in the performance-
orientated implementation
Scenario LOC
S1 800
S2 70
S3 50
S4 50
S5 20
S6 70
S7 20
S8 10
S9 10
S10 20
S11 50
S12 600
S13 70

4. Bengtsson-Bosch Calculations
Volume: The volume of the affected code in the maintainability- or POI in Scenario n.
Calculated Effort: The Effort required maintaining the structure during a maintenance cycle.

Scenario P(S)
MOI
Volume

POI
Volume

Calculated
MOI LOC

Calculated
POI LOC

S1 0,04 800 800 28,5 28,5
S2 0,07 70 70 5,0 5,0
S3 0,05 50 50 2,5 2,5
S4 0,05 50 50 2,5 2,5
S5 0,12 20 20 2,4 2,4
S6 0,13 50 70 6,7 9,4
S7 0,13 20 20 2,5 2,5
S8 0,11 10 10 1,1 1,1
S9 0,09 10 10 0,9 0,9
S10 0,05 20 20 1,0 1,0
S11 0,06 50 50 3,0 3,0
S12 0,03 400 600 11,4 17,1
S13 0,08 50 70 3,9 5,4
Sum 1 5,5 6,3
 Difference 14%

5. Modified Bengtsson-Bosch Calculation

MOI
Volume

POI
Volume

S1 800 800
S2 70 70
S3 50 50
S4 50 50
S5 20 20
S6 50 70
S7 20 20
S8 10 10
S9 10 10
S10 20 20
S11 50 50
S12 400 600
S13 50 70
Average 123,1 141,5
Difference 15%

Page 16 of 17

Appendix IV: Performance Test Data

1. CPU-Usage test in milliseconds.
TC1 – TC5: Test cases.

MOI TC1 TC2 TC3 TC4 TC5
 2270 2720 2600 7830 9560
 2250 2720 2590 7820 9570
 2270 2720 2600 7820 9570
 2250 2720 2600 7820 9560
 2260 2720 2590 7820 9560
 2260 2730 2600 7820 9570
 2260 2730 2600 7830 9580
 2260 2720 2600 7820 9570
 2260 2730 2600 7820 9560
 2260 2720 2590 7820 9560
 2260 2720 2590 7820 9560
 2260 2720 2590 7820 9570
Average 2260 2723 2596 7822 9566

POI TC1 TC2 TC3 TC4 TC5
 1550 1820 1650 5350 5930
 1550 1830 1640 5350 5930
 1550 1820 1650 5340 5930
 1550 1830 1640 5360 5940
 1540 1820 1650 5350 5930
 1550 1830 1640 5350 5930
 1550 1820 1640 5360 5930
 1550 1820 1650 5340 5930
 1550 1820 1640 5340 5930
 1550 1830 1640 5350 5940
 1550 1820 1640 5350 5930
 1550 1830 1640 5350 5930
Average 1549 1824 1643 5349 5932

Percentage
Difference 46% 49% 58% 46% 61%

2. Memory Tests

Page 17 of 17

 TC1 TC2 TC3 TC4 TC5
MOI 668 693 668 700 725
POI 628 636 628 644 652
Percentage
Difference 6% 9% 6% 9% 11%

